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Nonlocally coupled oscillator systems can exhibit an exotic spatiotemporal structure called a chimera, where
the system splits into two groups of oscillators with sharp boundaries, one of which is phase locked and the
other phase randomized. Two examples of chimera states are known: the first one appears in a ring of phase
oscillators, and the second is associated with two-dimensional rotating spiral waves. In this paper, we report yet
another example of the chimera state that is associated with the so-called Ising walls in one-dimensional
spatially extended systems. This chimera state is exhibited by a nonlocally coupled complex Ginzburg-Landau
equation with external forcing.
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I. INTRODUCTION

Nonlocally coupled oscillator systems can exhibit a re-
markable class of patterns called chimera, in which identical
oscillators separate sharply into two domains, one coherent
and phase locked, the other incoherent and drifting �1–4�.
These two groups of oscillators together maintain stable or-
ganized patterns in the system. The existence of such pat-
terns was first noticed and explained in a ring of phase os-
cillators �1�, and studied in further detail �3�. Furthermore, it
was found that the chimera states also appear in rotating
spiral waves in two-dimensional spatially extended systems
�2�. Recently, an interesting pattern similar to the chimera
states studied in Refs. �1,3� was also found in nonlocally
coupled Hodgkin-Huxley equations with excitatory and in-
hibitory synaptic coupling, where such patterns spontane-
ously appear as a result of the instability of the uniform state,
in contrast to the original chimera that appears when the
uniform state is stable �5�.

In this paper, we present another simple example of the
chimera state associated with the Ising walls in one-
dimensional spatially extended systems, which is exhibited
by a nonlocally coupled complex Ginzburg-Landau equation
�CGLE� with a parametric forcing. Recently, a nonlocally
coupled CGLE without forcing has been studied intensively
�6–12�, and a locally coupled CGLE with forcing has also
been investigated widely �13–19�. To our knowledge, Battog-
tokh considered the nonlocally coupled CGLE with forcing
for the first time, and demonstrated various interesting phe-
nomena, e.g., nonequilibrium Ising-Bloch transitions �20�.
Here, we will focus only on the chimera Ising wall; it is the
simplest one among them, but its theoretical analysis has not
yet been carried out.

The organization of the present paper is the following. In
Sec. II, we introduce our model and illustrate its normal and
chimera Ising walls by numerical simulations. In Sec. III, we
reduce our model to the phase model, and numerically dem-
onstrate that the reduced phase model also exhibits the chi-
mera Ising walls. In Sec. IV, a functional self-consistency
equation is derived by introducing a space-dependent order

parameter, and its numerical solution is compared with the
numerical simulation presented in Sec. III. Concluding re-
marks will be given in the final section.

II. CHIMERA ISING WALLS

We consider the following equation that describes a sys-
tem of nonlocally coupled limit-cycle oscillators driven by a
parametric external forcing:

�tA = �1 + ic0�A − �1 + ic2��A�2A + K�1 + ic1��B − A� + �A*,

�1�

which we call a forced nonlocally coupled complex
Ginzburg-Landau equation. Here c0, c1, c2, K, and � are real
parameters, the complex amplitude A�x , t� represents the
state of a local limit-cycle oscillator at location x and time t,
and A* is the complex conjugation of A. The quantity B�x , t�
represents the nonlocal coupling defined by

B�x,t� =� dx�G�x − x��A�x�,t� , �2�

G�x� =
1

2
exp�− �x�� , �3�

where the nonlocal coupling function G�x� is normalized in
the infinite domain. K represents the coupling strength, and
c1 is the phase shift of the coupling �6–12�. The last term
�A* represents the effect of the parametric external forcing
with almost double the natural frequency, whose intensity is
given by �, and c0−c2 stands for the frequency mismatch
�13–19�. In the absence of the coupling and the external forc-
ing, i.e., when K=�=0, Eq. �1� is simply given by �tA= �1
+ ic0�A− �1+ ic2��A�2A, which is the simplest limit-cycle os-
cillator, called the Stuart-Landau oscillator �21,22�, so that
Eq. �1� describes a system of forced nonlocally coupled os-
cillators. In addition, Eq. �1� is a normal form that can be
derived from a wide class of reaction-diffusion systems near
the Hopf bifurcation point under particular assumptions by
using the center-manifold reduction method �6,10,13,21�.

In our numerical simulations, the continuous medium of
size L was discretized using N=2048 grid points with suffi-*Electronic address: kawamura@ton.scphys.kyoto-u.ac.jp
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ciently small and fixed separation �x=0.005, i.e., L=N�x,
and the Neumann boundary condition �zero flux� was im-
posed. Our numerical results are unchanged if we further
increase the number of grid points N or the system size L.
The initial condition was such that A �x�0, t=0�=1.0 and A
�x�0, t=0�=−1.0. In what follows, we fix the parameter
values as c0=1.0, c1=−0.5, and c2=1.0. Note that we set the
frequency mismatch at zero, i.e., c0−c2=0, for the sake of
simplicity. Furthermore, we fix the ratio of the coupling
strength to the force intensity as K /�=1.5.

Figure 1 displays a phase portrait �Fig. 1�a��, a spatial
profile of the phase �Fig. 1�b��, and a spatial profile of the
modulus �Fig. 1�c�� for the strong coupling case, K=1.5 and
�=1.0, obtained by a direct numerical simulation of Eq. �1�.
The phase portrait is given by a set of grid points in the
complex plane, each representing the state of a local oscilla-
tor at a given time. It is found that a normal Ising wall
appears and all local oscillators are completely phase locked.

Figure 2 displays a phase portrait �Fig. 2�a��, a spatial
profile of the phase �Fig. 2�b��, and a spatial profile of the
modulus �Fig. 2�c�� for the weak coupling case, K=0.06 and
�=0.04. It is found that a chimera Ising wall appears, which
consists of incoherent drifting oscillators near the center
�x=0� and coherent phase-locked oscillators in the peripheral
regions. All the oscillators take almost the full amplitude
�A�=1, so that the system has no phase singularity. At the
same time, the spatial continuity of the pattern near the cen-
ter �x=0� is lost, so that a pair of local oscillators infinitely
close to each other in this region are not always close in the
state space.

We can estimate the critical coupling strength below
which the oscillator at the center of the normal Ising wall

starts to drift incoherently, leading to the chimera state. From
the spatial symmetry of the normal Ising wall, the values of
A and B vanish at the center, i.e., A �x=0, t�=B �x=0, t�=0.
If we regard B as an external forcing �4�, the linearized equa-
tion for the complex amplitude A �x=0, t� at the center is
given by

�tA = �1 + ic0�A − K�1 + ic1�A + �A*. �4�

A linear stability analysis of the stationary solution A
�x=0, t�=0 gives the following eigenvalues:

�± = 1 − K ± ��2 − �c0 − Kc1�2. �5�

Therefore, the necessary condition for the appearance of the
chimera Ising wall, i.e., the condition for the oscillator at the
center �x=0� to drift, is expressed as �+�0. In fact, when
K�1 is satisfied under our parameter conditions, the oscil-
lator at the center �x=0� starts to drift and a chimera Ising
wall appears. Hereafter, we focus on the chimera Ising walls
and consider the situation where the coupling strength is
much smaller than 1, i.e., K�1.

III. PHASE REDUCTION

In order to investigate the nature and the origin of the
chimera Ising walls in further detail, we reduce Eq. �1� to a
phase equation for the phase ��x , t�, which is much easier to
analyze. When the coupling strength K and the forcing inten-
sity � are sufficiently small, the phase reduction method
�21–23� is applicable, which is actually the case for our weak
coupling case, K=0.06 and �=0.04. The reduced equation
takes the form
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FIG. 1. Phase portrait �a�, spa-
tial phase profile �b�, and spatial
modulus profile �c� of the normal
Ising wall exhibited by the forced
nonlocally coupled complex
Ginzburg-Landau equation �1� in
the strong coupling case, K=1.5
and �=1.0. The numerical data
are represented by the open circles
�only one in every eight oscilla-
tors is plotted�. The limit-cycle or-
bit �A�=1 of the local oscillator is
also displayed in �a�.

YOJI KAWAMURA PHYSICAL REVIEW E 75, 056204 �2007�

056204-2



�t� = − K	� dx�G�x − x���sin�� − �� + 
� − sin 
�

− �� sin�2� + �� , �6�

where the condition c0−c2=0 was used. Here �� is the ab-
breviation of ��x� , t�. The new parameters are related to the
original parameters through

	 exp�i
� = �1 − ic1��1 + ic2� , �7�

� exp�i�� = �1 + ic2� , �8�

where 	, �, 
, and � are real. When the time scale is changed
so that the force intensity is normalized, t→ t /��, Eq. �6� can
be rewritten as

�t� = − K�� dx�G�x − x���sin�� − �� + 
� − sin 
�

− sin�2� + �� , �9�

where

K� =
K	

��
. �10�

Figure 3�a� displays a spatial profile of the phase � of the
local oscillators obtained by a numerical simulation of
Eq. �9� using parameter conditions corresponding to Fig. 2.
The phase pattern is very similar to that in Fig. 2�b�. As in
the previous case, only the local oscillators near the center
�x=0� are drifting incoherently, and all other oscillators are
phase locked.

Now let us introduce a space-dependent complex order
parameter with modulus R�x� and phase �x� through

R�x�exp�i�x�� =� dx�G�x − x��exp�i��x�,t�� . �11�

We assume the order parameter to be time independent,
which will be confirmed below. In terms of this order param-
eter, Eq. �9� may be expressed in the form of a single-
oscillator equation

�t� = − K��R sin�� −  + 
� − sin 
� − sin�2� + �� ,

�12�

or, if we further introduce a space-dependent effective force
function Hx��� through

Hx��� = K��R sin�� −  + 
� − sin 
� + sin�2� + �� ,

�13�

Eq. �9� can be expressed as

�t� = − Hx��� . �14�

Our effective force function is composed of the internal force
�the first harmonic term� and the external force �the second
harmonic term�, which is similar to the order function intro-
duced by Daido �24–26�.

The spatial profiles of R�x� and �x� obtained by the nu-
merical simulation of Eq. �9� are displayed in Figs. 3�b� and
3�c�, respectively. We can see that the order-parameter modu-
lus has a vanishing value at the center, and both the modulus
and the phase of the order parameter are time independent.
The distribution of the mean frequency �̄�x� of the local
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FIG. 2. Phase portrait �a�, spa-
tial phase profile �b�, and spatial
modulus profile �c� of the chimera
Ising wall exhibited by the forced
nonlocally coupled complex
Ginzburg-Landau equation �1� in
the weak coupling case, K=0.06
and �=0.04. The numerical data
are represented by the open circles
�only one in every eight oscilla-
tors is plotted�. The limit-cycle or-
bit �A�=1 of the local oscillator is
also shown in �a�.

CHIMERA ISING WALLS IN FORCED NONLOCALLY… PHYSICAL REVIEW E 75, 056204 �2007�

056204-3



oscillators, which is defined by the long-time average of �t�,
is also displayed in Fig. 3�d�. In the phase-locked domain,
the oscillation frequencies are identically zero, while in the
drifting domain they are distributed.

The dependence of the effective force function Hx��� on x
and � is displayed in Fig. 4. It is found that Hx��� crosses
the zero plane only twice in every 2� interval of � at each x
in the peripheral regions, which will make our analysis
simple. We should also note that Hx��� is always below zero
near the center �x=0�, namely, Hx��� never crosses the zero
plane in this region.

In the next section, we develop a self-consistent theory for
determining the spatial profiles of the quantities displayed in
Fig. 3.

IV. SELF-CONSISTENT THEORY

We now develop a self-consistent theory that can repro-
duce our simulation results by generalizing the earlier theo-

ries �1–4,21–26�. There are two possible cases regarding the
solution of Eq. �14�. Let Hmin�x� and Hmax�x� denote the
minimum and the maximum of Hx��� in every 2� interval of
� at each x, respectively. Then the two cases are expressed
by

Hmin�x� � 0 � Hmax�x� �case I� �15�

and

Hmin�x� � 0 or 0 � Hmax�x� �case II� . �16�

Correspondingly, the oscillators are divided into two groups.
In case I, which corresponds to the group of phase-locked
oscillators in the peripheral regions, Eq. �14� admits only one
pair of stable and unstable fixed points. We denote the stable
fixed point formally as

�0�x� = Hx
−1�0� , �17�

where Hx
−1 is the inverse function of Hx. The average fre-

quency �̄�x� of the oscillators in this group is identically
zero,

�̄�x� = 0. �18�

Case II corresponds to the group of drifting oscillators, for
which Eq. �14� admits a drifting solution. The average fre-
quency �̄�x� is formally expressed as

�̄�x� = 2���
0

2� d�

− Hx���	−1

, �19�

which depends on x. The contribution to the order parameter
from the drifting oscillators can be computed by the standard
method �1,21�. That is, we use the invariant measure, i.e., the
probability density px��� associated with the drift motion.
Noting that the probability density for the phase at x to take
on value � must be inversely proportional to the drift veloc-
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FIG. 3. Spatial profiles of the
local oscillator phase � �a�, the
order-parameter modulus R �b�,
the order-parameter phase  �c�,
and the mean frequency �̄ of the
local oscillators �d�, obtained by a
numerical simulation of the phase
equation �9�. The numerical data
are represented by open circles
�only one in every eight oscilla-
tors is plotted�.
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FIG. 4. Dependence of the effective force function Hx��� on x
and �. The contour lines corresponding to Hx���=0 are also dis-
played in the base plane. Note the gap near the center �x=0�, where
Hx��� does not cross the zero plane.
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ity given by the right-hand side of Eq. �14�, we obtain

px��� = Cx�− Hx����−1, �20�

where Cx is the normalization constant given by

Cx = ��
0

2� d�

− Hx���	−1

. �21�

Putting together the two types of contributions to the or-
der parameter, we finally obtain a functional self-consistency
equation in the form

R�x�exp�i�x�� =� dx�G�x − x��h�x�� , �22�

where

h�x� = 
ei�0�x� �case I� ,

�
0

2�

px���ei�d� �case II� . � �23�

We can determine the quantities shown in Fig. 3 from this
functional self-consistency equation. The solution can be ob-
tained numerically by an iteration procedure, which is com-
pared with the results of the numerical simulation in Fig. 5.
The agreement between the theory and the numerical simu-
lation is excellent for all quantities.

We finally make a brief comment. The order-parameter
phase does not drift in our chimera Ising walls, which makes
our analysis easy because we do not need to calculate the
collective frequency. In the two earlier examples of the chi-

mera states, we had to work with a nonlinear eigenvalue
problem, or determine the various quantities together with
the collective frequency �i.e., the eigenvalue� �1,2�.

V. CONCLUDING REMARKS

We present a type of chimera state associated with the
Ising walls in the one-dimensional forced nonlocally coupled
complex Ginzburg-Landau equation. We focused on the
weak coupling case, where the phase reduction method is
applicable, and reduced the original model to the phase
model. Generalizing the previous theories, we derived a
functional self-consistency equation to be satisfied by the
order parameter. Its solution successfully reproduced our
simulation results carried out on this phase model.

The chimera state studied in Refs. �1,3� seems rather spe-
cial because the boundary effects are crucial �4�. In contrast,
the chimera Ising walls stably exist regardless of the bound-
ary effects, and they survive even in spatially infinitely ex-
tended systems, like the chimera spiral waves that persist in
two-dimensional spatially extended systems �2,4�. Our pre-
liminary analysis suggests that a chimera hole solution does
not seem to exist in a one-dimensional nonlocally coupled
�cubic� complex Ginzburg-Landau equation without para-
metric forcing. Therefore, our chimera Ising wall may be the
simplest example of chimera states which is still relevant to
real-world phenomena.
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